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Summary 

Analytical expressions for the rate constants ki and n”’ of the photo- 
chemical reaction scheme: 
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with steady-state, modulated and pulsed excitation of A are derived. 

The evaluation of kinetic rate constants ki of a three-component system: 

fz 1 k3 
A-‘B-C 

kz k4 

in the ground state is described in the literature [l] . Steady-state and tran- 
sient (relaxation) methods are used. The present state of experimental devel- 
opment has been described in a book [2]. Kiihne and Walter [ 31 have 
reported on special mathematical procedures and methods for analysis of 
the equilibrium. 

A photochemical system with three components is involved in the change 
in the fluorescence spectrum of aromatic carbon acids [4], and possibly also 
in the diabatic deactivation of naphthalene derivates [5, 61 . 

The general photochemical system is: 

(1) 



98 

A, B and C are the concentrations of the electronic excited states of the com- 
ponents A,, Br and C1 ; ki the photochemical and nci) the photophysical 
rate constants; 1(t) the excitation intensity. It is assumed that the photons are 
absorbed only by Ai. In the case of the protolytic fluorescence change of 
l-naphthol (ROH) we have: A = ROH* + HsO, B = (ROH.HsO)*, C = RO-*+ 
IlaO and k4 = kk [HsO’] . The reaction scheme (1) leads to the following 
system of differential equations: 

dA 
- = -(n + kl)A 
dt 

dB ~. = 
dt 

dC -= 
dt 

kl A- (n’ + k2 + k,)B 

+ I(t) 

+ k4 C 

12, B - (n” + k4)C 

(2) 

To determine the constants experimentally three methods can be used to 
disturb the equilibrium: steady-state [I(t) = I0 = const.] , modulated [I(t) = 
eiWf] and step- or delta-shaped [I(t) = 1 for t = 0 and I(t) = 0 for t > 01. 

Steady-state excitation 
In the stationary case, the concentrations are time-independent: dA/dt = 

dB/dt = dC/dt = 0. The system (2) is reduced to: 

-(n + k,)A + kzB =- IQ 

ki A - (n’ + k2 + ka)B +k4C =0 

k,B - (yt” + k4)C = 0 

By using Cramer’s rule the solution may be shown to be: 

DA 
A=-- 

D ’ 
B= DB DC -, C=-- 

D D 

D is the coefficient determinant: D = - (nn’ + n’kl + nkz) (n” + k4) - 
(n + kl)n”kg. The Cramer’s determinants are: 

DA = -I,, [(n’ + k2) (n” f k4) + k3n”] 

D, = -Iok (n” + k4) 

DC = --I,k, k3 

The intensity I0 can eliminated by using A0 as a reference {e.g. for the fluo- 
rescence change of l-naphthol: A0 = A( [HsO’] + m )}. 

Harmonically modulated excitation: I(t) = eiwr 
w means the frequency of modulation. The particular solution of sys- 

tem (2) for this type of excitation is: 
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A(t) = a ej(wt--lpl) 

B(t) = b ,i(w+-lpzl 

C(f) = c (g(wt--lp3) 

where a, b and c are the degrees of modulation of the emission and the pi 
the phase difference between the signals due to the emission and the excita- 
tion. By using the Cramer’s rule we obtain: 

DA 
a eLiVl = - 

D 
, be-iv2 =?!!_, Ce-iV3 =!!!? 

D D 

and so: 

tancp, = 
Im(D*D*) 

Re(D*D,) 

and similarly for pz and p3 substituting I3 or C for A: 

iw+n+ .Ezl, -k2 0 

D = -kl iw + n’ + kz + k3 -k4 

0 -k3 iw + n” + k4 

D* denotes the conjugate complex of D. DA, DB and DC may be obtained 
by the method of the previous section. Substituting these determinants into 
the formula for the tangent, we obtain by simple algebra: 

tan cpl w2alb2 +a3bl -a2bz = 
W w2 (a3 b2 - al b,) + a2 bl 

tan rpz w2a1 - a2 + a3(n” + k,) -= 
W w2 [a3 -al (n” + k4)] + a2 (n” + kq) 

tan rp3 a3 -= 

W a2 - w2al 

where 

a1 = n + n’ + n” + kl + k2 + k3 + k4 

a2 =(n ” + k4) (nn’ -f n’kl + nk2) + n”k3(n + kl) 

a3 =-w 2 + nnr + n’k, + nk2 + nk, + k, k, + n”k, + (n” + k4) X 

(n + n’ + kl + k2) 

bl = -w2 + n”ka + (n” + k4) (n’ + k,) 

b2 = n’ + n” + k2 + kg + k4 

The solution for the degrees of the modulation is not given because their 
experimental determination is complicated and inexact especially at higher 
frequencies. 
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Pulse excitation: I(t) = 1 for t = 0 and I(t) = 0 for t > 0 
By using A = A0 exp(-At), B = II, exp(-At), C = Co exp(--Xt) and 

substituting into eqn. (Z), we obtain the secular determinant and then the 
characteristic equation: 

A3 -cYx2 +/3x--=0 

where: 
a:=a1,p=a3+w2,y= a2 (see previous section) 

This equation is best solved by computer. The solution of the system (2) is 
given by: 

Aft) = i Ai, e-*if 
i=l 

B(t) = i Bi, e-‘if 
i=l 

C(t) = 5 Ci, e-‘i’ 
i=l 

For the determination of the coefficients the boundary conditions A(o) = 1 
and B(o) = C(o) = 0 are used. By substituting these equations into the ho- 
mogeneous system (2) a set of boundary conditions is obtained for the first 
derivatives and hence by a similar procedure the boundary conditions for 
the second derivatives. The equations for the coefficients Ai, are then: 

A 10 + A20 +A30 = 1 

AlAlo + hzAzo + X3Aa0 = n + kl 

?+h, + h$Azo + h$ASO = (n + k1)2 + klk2 

It follows from the well-known procedure that: 

wo 
Alo =_-= 

D 
n-k1)-hg(h3 -n 

[in + kd2 + klk2102 - X,)1 

020 1 
AZ0 =_= 

D 
5{Xf(X, -n-kl)-hz(hl 

[(n + kd2 + klk2103 - A,)) 

A30 =*=;+;(A, --n-kkl)-~;(X2 
D 

I(n + kd2 + klkzl0, - A,)} 

- 
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- 
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where: 

D = x:(x, - X,) + x:(x, -X,) + x& - X,) 

with corresponding expressions for B and C: 

B 
D;o 4 

10 =-- = - [hi - A: - (n + n’ + kl + k, + k3)(h3 -X2)] 
D D 

B20 
D’zo kl 

=- = s [X4 - Xg - (n + n’ + k, + k, + ks)(hl - X3)] 
D 

D&I kl BsO = -= 
D 

5 [h% -hZ - (n + n’ + kl + k2 + k3)(h2 -Al)] 

%o klk3 
clo=-= 

D 
-y(b --2) 

c2,=-._= 
Go klk3 @ _-h ) 

D D ’ 3 

C 30 = 
Dk’o klk3 (x _-x ) 

0=72 1 

If, however, the decay of the concentrations of the excited states is distorted 
by the finite time of excitation, the solution of system (2) is no longer suf- 
ficient. Mathematically this is treated by the convolution integral: 

A’(t) = / A(B)l(t - 8)dB 
0 

where A(t) is the solution of the system (2) and A’(t) the measured signal. 
A critical survey of the determination of the system parameters by using this 
integral is given by Knight and Selinger [ 7 ] and by Shaver and Love [ 81. 

For the fluorescence transformation of I-naphthol we obtain the fol- 
lowing results (the units are 10’ s-l or 10’ M-l s-l): 

n = 0.02 n’ = 4 ~8” = 0.125 

kl =7 kz 4 1 k, = 10 k4 = 93 

In the general case, the evaluation of the rate constants requires the use of 
all three types of disturbance or excitation accompanied by computer anal- 
ysis by simulation or the regression method. 
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